What if nanomedicine made the leap from potential to reality?

Nanomedicine Over the Edge

Within Reach **Transitional** Visionary

Advanced machine intelligence, open data, and genomic research unlock nanomedicine's potential by solving critical toxicity challenges, enabling advances in precision medicine.

07

UNCERTAINTIES

Technology, Values

MEGATREND (Most significant)

Materials Revolution

TRENDS

£3.

Bioinformatics Biotechnology Longevity & Vitality Open Data Precision/Personalised Medicine

TECHNOLOGIES

Artificial Intelligence Nanomedicine Real-Time Analytics

SECTORS IMPACTED

Data Science, Al & Machine Learning Health & Healthcare Materials & Biotechnology

KEYWORDS

Biomaterials Drug Delivery Nanoparticles Nanotoxicity Target Therapies In 2023, nearly half 47% of healthcare providers around the world report worsening access to healthcare

WHY IT MATTERS TODAY

The limitations of a one-size-fits-all approach to healthcare underscore the growing need for personalised medicine.⁵⁸⁸ Unlike standardised treatments applied broadly, personalised medicine seeks to tailor therapies. This innovative strategy focuses on the unique genetic, environmental and lifestyle factors of each patient, enabling healthcare providers to deliver targeted therapies that are more effective and have fewer side effects. Using advanced diagnostic tools and molecular profiling, personalised medicine allows earlier disease detection and intervention, ultimately leading to improved health outcomes.⁵⁸⁹

At a time when healthcare facilities are under strain around the world,⁵⁹⁰ nanotechnology can help to build a more resilient healthcare model.⁵⁹¹ In 2023, nearly half (47%) of healthcare providers around the world reported worsening access to healthcare. The industry is facing increased hospital costs and rising labour costs (driven in part by staffing shortages), and people have lower disposable incomes, making it harder for them to cover unexpected medical costs.⁵⁹²

Rapid advancements in biotechnology and bioinformatics are paving the way for the further development of nanomedicine. At a scale of one-billionth of a metre, nanobiotechnology can improve disease detection (e.g. ovarian cancer), and diabetes management through biosensors, targeted drug delivery, enhanced imaging quality, and wound healing.⁵⁹³ While successful applications exist in bone regeneration,⁵⁹⁴ breast cancer treatment,⁵⁹⁵ genetic disorders,⁵⁹⁶ and glaucoma treatment,⁵⁹⁷ challenges remain with long-term toxicity and stability of nanomaterials.⁵⁹⁸ BENEFITS

toxicity.

RISKS

Early disease detection;

enhanced preventative care; targeted drug delivery; autonomous medicine; reduced

burden on healthcare; advances in understanding environmental

Misdiagnosis and treatment; unknown side effects caused by biomaterials; unknown long-term effects or toxicity; regulatory challenges; potential job displacement in healthcare.

THE OPPORTUNITY

A comprehensive approach combining advanced machine intelligence, open data,⁵⁹⁹ and genomics helps overcome the challenge of nanotoxicity in nanomedicine. This approach provides a deeper understanding of how nanoparticles may affect our bodies and our genes,⁶⁰⁰ including their potential role in epigenetics – the way our genes respond to external factors – and can help turn clinical successes into reality.⁶⁰¹

Nanomedicine holds great potential to dramatically improve the accuracy, efficiency and sensitivity of diagnostic testing and treatment, but nanotoxicity remains a critical barrier to widespread adoption.⁶⁰² From nanotubes, nanorods and nanofibres, to nanowires, nanoplates and nanoparticles, nanomaterials can enter the body through breathing, ingestion, injection or skin contact, with each method carrying its own risks.⁶⁰³ While breathing carries the greatest risk, nanotoxici[†] health risks related to long-

Advanced machine intelligence, open data, and genomics can help overcome nanotoxicity challenges, turning clinical successes in nanomedicine into reality

