23

What if sustainable desalination could provide drinking water for everyone?

Aqua Tech GenAl

Within Reach	Transitional	Visionary

Smart, renewable desalination systems combine renewable energy and novel materials to turn seawater or groundwater into freshwater in water-scarce regions.

Carrie

UNCERTAINTIES

Systems, Technology

MEGATREND (Most significant)

Evolving Ecosystems

TRENDS

Biomimicry Cross-Sectoral Partnerships Food–Water–Energy Nexus International Collaboration New Materials

TECHNOLOGIES

Climate Tech Nanotechnology

SECTORS IMPACTED

Agriculture & Food Energy, Oil & Gas, & Renewables Government Services Health & Healthcare Infrastructure & Construction Materials & Biotechnology Utilities

KEYWORDS

Biomimicry Desalination Renewable Energy Sustainability Water Security

WHY IT MATTERS TODAY

Freshwater is a critical resource globally. Nearly 70% of the Earth's surface is water, of which roughly 97.5% is salty.⁸⁵⁶ Of the Earth's freshwater, approximately 69% is in the ice caps and glaciers and 30% is in the ground, leaving only 1% readily accessible for human use – for example, in ice, snow, lakes and rivers.⁸⁵⁷ It is estimated that 2 billion people currently lack access to a managed source of safe drinking water,⁸⁵⁸ and global water stress is projected to impact 4 billion people by 2030.⁸⁵⁹ In addition to the effect of a growing global population,⁸⁶⁰ global water stress will be exacerbated by climate change, as rising sea levels increase the salinity of groundwater, and floods and droughts increase water pollution.⁸⁶¹

A lack of clean water has significant impacts on human health and hygiene. Each year, around a million people are estimated to die from diarrhoea because of unsafe drinking water and sanitation, and in 2021 over 251 million people required treatment for schistosomiasis, caused by parasites in infested water.⁸⁶² Increasing water salinity is limiting crop production⁸⁶³ and contributing to soil erosion,⁸⁶⁴ reducing global agricultural production by 124 trillion kilocalories annually, equivalent to feeding 170 million people per year.⁸⁶⁵

The global capacity for desalination has grown by 7% annually since 2010, reaching 99 million m³/day in 2022, with the Middle East and North Africa (MENA) contributing 70%.⁸⁶⁶ Reverse osmosis dominates in the European Union, accounting for 88.5% of capacity, while the MENA region favours thermal processes.⁸⁶⁷ Besides the carbon emissions of desalination technologies,⁸⁶⁸ desalination also produces over 150 million m³/day of brine globally, harming marine ecosystems, reducing oxygen, and killing aquatic life.⁸⁶⁹

billio

BENEFITS

economy.

RISKS

Water security; reduced emissions; reduced brine

output; improved health through

increased access to clean and safe water; improved agriculture and more robust agricultural

Durability of the materials; cost

and complexity of maintaining

and managing multiple clean energy technologies.

Advanced machine intelligence, the Internet of Things (IoT), edge computing, and real-time analytics are combined with hybrid solar⁸⁷⁰ and wind power⁸⁷¹ systems in single or multiple units designed⁸⁷² to autonomously produce clean, cost-effective and safe⁸⁷³ freshwater from seawater or groundwater⁸⁷⁴ at scale. This integration is significant for water-scarce regions,⁸⁷⁵ as solar desalination has been limited by lower yields and higher costs and intermittency compared with traditional desalination.⁸⁷⁶

Innovative materials⁸⁷⁷ enhance desalination. For example, 2D nanomaterials, including graphene and other highly permeable materials, enable efficient filtering membranes,⁸⁷⁸ while 3D-printed porous structures with tree-like topologies⁸⁷⁹ improve water transport through capillaries that significantly reduce, or even eliminate, brine as a by-product.⁸⁸⁰

Minimum and zero liquid discharge desalination methods⁸⁸¹ present further opportunities for innovation, with biomimicry possibly enhancing efficiency and reducing costs. For example, researchers at Khalifa University recently explored an allencompassing solar desalination solution that mimics mangrove processes, using brine crystallisation to eliminate the production of brine as waste.⁸⁸²

Khalifa University recently explored an all-encompassing solar desalination solution that **mimics mangrove processes, using brine crystallisation to eliminate the production of brine as waste**

Innovative materials enhance desalination.

The Global 50 (2025)

0