13

### What if ultrasound eliminated microplastics from oceans and lakes?

## **Sonic Sweep**

| Within Reach | Transitional | Visionary |
|--------------|--------------|-----------|
|--------------|--------------|-----------|

A chemical-free and scalable solution, ultrasonic waves remove microplastics from water, creating cleaner oceans and safer drinking water globally.



#### UNCERTAINTIES

Nature, Technology

**MEGATREND** (Most significant) Evolving Ecosystems

#### TRENDS

Cross-Sectoral Partnerships Food-Water-Energy Nexus Mobilising Innovation New Materials Sustainable Waste Management

#### **TECHNOLOGIES**

Climate Tech Sensor Technologies

#### SECTORS IMPACTED

Agriculture & Food Chemicals & Petrochemicals Energy, Oil & Gas, & Renewables Government Services Health & Healthcare Infrastructure & Construction Manufacturing Materials & Biotechnology Utilities

#### KEYWORDS

Environmental Remediation Marine Conservation Microplastic Removal Ultrasonic Filtration Water Purification

R

**The Global 50** (2025)

There are an **estimated** 

### 

pieces of plastic waste currently in our oceans, and by 2040, the amount of microplastics released into the environment each year could more than double



#### WHY IT MATTERS TODAY

There are an estimated 50 to 75 trillion pieces<sup>689</sup> of plastic waste currently in our oceans, with up to 10 billion kg of plastic being added each year,<sup>690</sup> with up to 81% of ocean microplastics coming from their breakdown (secondary microplastics).<sup>691</sup> Irrespective of the route, by 2040, the amount of microplastics being released into the environment each year could more than double<sup>692</sup> – all amid rising concerns about their effects.<sup>693</sup>

From an environmental perspective, microplastics pose a dual threat as they leach chemicals into the ocean<sup>694</sup> and serve as magnets for heavy metals and organic pollutants.<sup>695</sup> These properties have detrimental impacts on marine habitats and marine organisms' behaviour.<sup>696</sup> Additionally, microplastics ingested by fish have been linked to gastrointestinal obstruction, enlarged colon, and impaired growth and health due to dietary disruption.<sup>697</sup> Plastic pollution impacts 267 marine species – harming 86% of sea turtles, 44% of seabirds, and 43% of marine mammals.<sup>698</sup>

Microplastic particles pose significant risks to human health through their interference with metabolic and physiological equilibrium,<sup>699</sup> particularly as it is thought that people consume between approximately 78,000 and 211,000 microplastic particles annually through food, drink and air.<sup>700</sup> These particles alter our oxidative balance, hormone regulation, cell growth, and inflammation markers, leading to diverse conditions.<sup>701</sup> Furthermore, microplastics serve as carriers for various environmental contaminants, potentially amplifying their detrimental health effects.<sup>702</sup>





People ingest between approximately

# 78,000 211,000 and 211,000

microplastic particles annually through food, drink and air

The Global 50 (2025)

BENEFITS

RISKS

Energy-intensive

due to subsequent waste removal.

implementation; limited impact; scalability challenges; high costs

Eco-friendly solution

to microplastic water

improved public health.

contamination; cleaner water; reduced use of chemicals;

#### THE OPPORTUNITY

Ultrasound technology removes microplastics (10 to 1,000 micrometres) from water, offering a practical chemical-free solution for water purification systems, wastewater treatment plants, and industrial facilities.<sup>703</sup> Integrated at pollution hotspots, such as treatment plant outlets, ultrasonic wave generators<sup>704</sup> provide advanced filtration of various particle sizes,<sup>705</sup> directing microplastics to collection zones for analysis and removal.<sup>706</sup>

Early prototypes have shown promising results, removing up to 82% of microplastics<sup>707</sup> from up to 800 litres of water per hour in the laboratory.<sup>708</sup> This chemical-free, low maintenance approach<sup>709</sup> offers a scalable and sustainable path forward in addressing microplastic contamination on a global scale.

ne Global 50 (2025

Early ultrasound technology prototypes show promising results, **removing up to 82% of microplastics** from up to 800 litres of water per hour in the laboratory