OPPORTUNITY

SCOPE TRANSITIONAL

UNCERTAINTIES

Technology, Nature

MEGATRENDS

Materials Revolution

TRENDS

Artificial intelligence Immersive technologies & wearables New Materials Nanomaterials Transforming energy

SECTORS IMPACTED

Agriculture & Food Automotive, Aerospace & Aviation **Chemicals & Petrochemicals Communication Technologies & Systems** Consumer Goods, Services & Retail **Digital Goods & Services** Education Energy, Oil, Gas & Renewables **Financial Services & Investment** Government Services Health & Healthcare Immersive Technologies Infrastructure & Construction Insurance & Reinsurance Logistics, Shipping & Freight Manufacturing Materials & Biotechnology Art, Media & Entertainment Metals & Mining **Professional Services Real Estate** Sports Travel & Tourism Utilities

FINALLY GRAPHENE

By unlocking solutions for mass production, graphene could transform energy storage, hydrogen fuel efficiency, air filtration, water desalination, sensor technologies, and healthcare, particularly in drug delivery and personalised medicine.

WHY IT MATTERS TODAY

Graphene is useful for everything from healthcare and energy to supercomputers and building materials, including batteries, solar cells, and sensors

The thinnest material known, graphene is a layer of carbon atoms arranged in a hexagonal matrix. It is also a superconductor,⁹²⁹ lightweight,⁹³⁰ strong (200 times stronger than steel),⁹³¹ flexible, and nearly transparent.⁹³² These invaluable properties mean graphene is useful for everything from healthcare and energy to supercomputers and building materials,⁹³³ including batteries, solar cells, and sensors.⁹³⁴

Even though it was discovered 20 years ago,⁹³⁵ it has yet to be adopted in mass manufacturing as it remains expensive to produce graphene that, beyond small flakes,⁹³⁶ is both defect free and in single layers.⁹³⁷ Nevertheless, some companies assert their ability to mass produce good quality graphene layer, e.g. 2DCarbon in China,⁹³⁸ and graphene flakes, e.g. Avadain in the United States.⁹³⁹

In 2013, the European Union launched a decade-long, \$1.1 billion^R Graphene Flagship project that has led to 83 patents, over 5,000 publications, and 17 spin-off companies.⁹⁴⁰ Abu Dhabi's Khalifa University of Science and Technology and the University of Manchester (where graphene was first produced) have partnered to jointly explore areas where graphene can make an impact, including water filtration and energy storage.⁹⁴¹

The global graphene market was valued at \$175 million in 2022 and is expected to grow at a CAGR of 46.6% from 2023 to 2030.⁹⁴² Graphene's global market potential is projected to reach \$190 billion by 2030.⁹⁴³

Graphene membranes have also been shown to boost the efficiency of air filtration by 55%-65%, and the efficiency of graphene-enhanced solar desalination increases by 70%-90%.⁹⁴⁴ Graphene also has the potential to make desalination a more sustainable solution for usable water and, as the need for more sensitive sensors grows, graphene, which has been shown to have increased the sensitivity of a fibre-optic sensor by 50%,⁹⁴⁵ could replace silicon and, for example, boost the efficiency of solar cells and conductivity in semiconductors.

From drug delivery to cancer treatment, as one of the most adaptable nanocarriers potentially available and with its ability to directly engage with the immune system,⁹⁴⁶ graphene may transform the way we approach healthcare and personalised medicine.

^RBased on EURUSD exchange rate on 30 December 2023.

OPPORTUNITY

With advanced machine intelligence, the mass production and application of graphene may become a reality with many applications owing to graphene's flexibility, conductivity, and high surface area⁹⁴⁷ – from water treatment⁹⁴⁸ and wearable sensors⁹⁴⁹ to e-skins⁹⁵⁰ and energy storage technologies, enhancing batteries, supercapacitors, and solar cells.⁹⁵¹ As graphene has also been shown to boost hydrogen fuel cell efficiency,⁹⁵² its application could accelerate the future potential of hydrogen in aviation⁹⁵³ such that 40% of European flights could be powered by hydrogen before 2050,⁹⁵⁴ earlier than currently expected.

BENEFITS

Thanks to its strong, stretchy, conductive, and atom-thin properties, graphene disrupts entire value chains, transforming everything from batteries to water and air purification, healthcare, wearables, and electronics.⁹⁵⁵

RISKS

Graphene's disruptive impact may affect jobs, with its toxicity posing health risks⁹⁵⁶ and creating new challenges in environmental sustainability.⁹⁵⁷

Graphene membranes have also been shown to boost the efficiency of air filtration by

55-65%

70–90%

and the efficiency of graphene-enhanced solar desalination increases by

The Global 50 (2024)